采用宏微觀形貌分析、化學成分分析、力學性能測試、SEM微觀形貌分析了手段,分析了減速機軸斷裂的原因,結果表明:熱處理工藝不規范,產生威視組織是減速機軸斷裂的主要原因;鍵槽的設計位置不合理加速了減速機軸的斷裂。
對產生破裂的減速機中心線激光切割抽樣,宏觀經濟檢驗斷口表層外貌、用直讀光譜儀剖析減速機軸的成分、用體視顯微鏡科學研究減速機軸從表層到芯部的外部經濟機構,用顯微硬度計檢驗減速機軸的顯微鏡強度,用SEM透射電鏡觀查減速機軸斷口的外部經濟外貌。
減速機軸縱向表面與軸橫端面的洛氏硬度檢測結果表明,失效軸硬度值在36~39HRC,遠低于技術要求的59~62HRC,顯然與設計要求不符。
該軸從表面至心部的組織為回火索氏體,說明該軸是在調質熱處理狀態下使用的,這與所測得軸的洛氏硬度相吻合。軸的工作狀態要求其表面硬度較高、耐磨,心部硬度相對較低,韌性較好。通常情況,軸表面一般經高頻或中頻處理后才使用,而失效軸的調質使用狀態與理論要求的高頻或中頻表面處理使用狀態不相符,由于工藝上的不合理,造成軸的疲勞抗力降低。
從減速機軸斷裂的位置看,疲勞起源于軸的退刀槽應力集中處。從微觀斷口看,有明顯的三個區域即裂紋源區、擴展區和瞬斷區,屬典型的疲勞斷裂。斷口貝紋線比較扁平,裂紋擴展前沿線兩側的裂紋擴展速度較大,瞬斷區在裂紋源的對面,由此可見,失效軸主要受旋轉彎曲應力。而從瞬斷區較小較圓看,失效軸整體受力較小[2]。根據上述斷口分析結果及斷裂形貌,認為軸斷裂屬中等名義應力集中條件的旋轉彎曲產生的疲勞斷裂。軸在承受旋轉彎曲應力的作用下,由于軸的表面硬度較低,加上退刀槽應力集中,使軸在正常工作應力下在退刀槽處過早的產生疲勞裂紋,隨著循環載荷的作用,疲勞裂紋不斷向基體內擴展,致使軸的有效承載尺寸減少,并產生彎曲,當進行冷校直時,對軸的凸起方向施加一定向下的外力時,導致軸的斷裂。